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"Development of Western science is based on two great achievements: the in-
vention of the formal logical system (in Euclidean geometry) by the Greek philosophers,
and the discovery of the possibility to find out causal relationships by systematic expe-
riment (during the Renaissance).”

By Albert Einstein (1953)
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TECNICAS DE APRENDIZAGEM CAUSAL UTILIZANDO DADOS MULTI-OTICOS
PARA CARACTERISTICAS DE CARCACA E QUALIDADE DE CARNE EM
BOVINOS DA RACA NELORE

RESUMO - Registros de caracteristicas quantitativas e informagdes genotipicas cole-
tadas para cada animal s&o utilizados para identificar regiées do genoma associadas
a variacao fenotipica. No entanto, essas investigacées sao, geralmente, realizadas
com base em testes estatisticos de correlacdo ou associacdo, que nao implicam em
causalidade. A fim de explorar amplamente essas informacdes, métodos poderosos
de inferéncia causal foram desenvolvidos para estimar os efeitos causais entre as
variaveis estudadas. Apesar do progresso significativo neste campo, inferir os efeitos
causais entre variaveis aleatérias continuas ainda é um desafio e poucos estudos tém
explorado as relagdes causais em genética quantitativa e no melhoramento animal.
Neste contexto, dois estudos foram realizados com os seguintes objetivos: 1) Buscar
as relacdes causais entre as caracteristicas de carcaca e qualidade de carne usando
um modelo de equacao estrutural (MEE), sob modelo linear misto em bovinos da raga
Nelore, e 2) Reconstruir redes de genes-fendtipos e realizar analise de rede causal por
meio da integracdo de dados fenotipicos, genotipicos e transcriptdbmicos em bovinos
da raca Nelore. Para o primeiro estudo, um total de 4.479 animais com informacao
fenotipica para o peso da carcaga quente (PCQ), area de olho lombo (AOL), espes-
sura de gordura subcutanea (EGS), for¢a de cisalhamento (FC) e marmoreio (MAR)
foram usados. Os animais foram genotipados usando os painéis BovineHD Bead-
Chip e GeneSeek Genomic Profiler Indicus HD - GGP75Ki. Para inferéncia causal
usando MEE, uma metodologia de multiplos passos foi utilizada: a) um modelo mul-
ticaracteristica padrao, considerando as caracteristicas estudadas, foi ajustado e as
(co)variancias residuais a posteriori foram estimadas, b) o algoritmo "Inductive Causa-
tion" (1C) foi utilizado para inferir as estruturas causais entre as caracteriticas usando
as (co)variancia residuais a posterior, e c) a partir da estrutura causal recuperada pelo
algoritmo IC, o MEE foi ajustado. Aplicando intervalo de maior densidade a posteriori
(HPD) de 95 %, 90 % e 85 %, as mesmas estruturas causais entre as caracteristi-
cas foram detectados pelo algoritmo IC, com links nao direcionados entre EGS com
PCQ e MAR. Ligacao extra entre FC e PCQ e a direcao entre EGS e PCQ foram iden-
tificados usando intervalo de HPD menor (80 %), enquanto que o link entre EGS e
MAR permaneceram estatisticamente sem direcdo. Dois MEE diferentes foram ajus-
tados com base na rede causal recuperada pelo algoritmo IC, com a seta EGS —
MAR ou com a seta EGS <+ MAR. O MEE que melhor se ajustou compreende as
seguintes ligacdes entre caracteristicas: FC — AOL, FC — PCQ, PCQ — AOL, EGS
— PCQ e EGS — MAR com coeficientes estruturais a posteriori igual a -0,29, 0,43,
0,10, 1,92 e 0,03, respectivamente. O MEE final revelou relagdes causais entre as
caracteristicas, e os efeitos causais sugerem que intervencées em FC e no EGS afe-
tariam diretamente o PCQ e a MAR. Para o segundo estudo, um total de 4.599 animais
com informacdes fenotipicas (AOL, EGS e FC) e genotipicas (como descrito anterior-
mente) foi utilizados. O sequenciamento do RNA (RNA-Seq) para 80 amostras de
tecido muscular de animais da raga Nelore foi reali-zado pelo sistema lllumina HiSeq



2500 produzindo leituras pared-end de 2x100 pares de bases usando amostra de
tecido muscular. Redes de gene-fenétipo e andlise de rede causal foram realizadas
usando uma abordagem de trés passos: a) analises de varredura do gendma para
identificar a associagdo entre dados genotipicos e fenotipicos (pQTL - mapeamento
de locos de caracteristicas quantitativas fenotipicas) e entre dados genotipicos e de
expressdo génica (eQTL - mapeamento de locos de caracteristicas quantitativas de
expressao). Os efeitos dos marcadores estimados em cada mapeamento de pQTL
para os fenétipos estudados (AOL, EGS e FC) foram usados para realizar uma analise
multicaracteristica. b) regides significativas para os dois mapeamentos de QTL (mul-
ticaracteristica e eQTL) foram co-localizadas, e c) a reconstrucdo da rede usando um
algoritmo de aprendizado estrutural causal considerando AOL, EGS, FC, eQTL e ca-
racteristicas de expressao génica foi realizada. A partir da analise multi-caracteristica,
14 regides do genoma foram associadas significativamente com AOL, EGS e FC e 19
cis-eQTL estavam sobrepondo cinco das regides do genoma. Com base na posicao
cis-eQTL (a mais significativa em cada regido do genoma), trinta e dois genes proé-
ximos foram identificados. Integrando dados fenotipicos, genotipicos e de expressao
génica a rede inferida indicou que o rs137704711, localizado no cromossomo 20, afe-
tou os trés fendétipos (AOL, EGS e FC), e o0 rs133894950, localizado no cromossomo
16, afetou o EGS por meio da expressao de varios genes localizados em diferentes
cromossomos. As inferéncias causais realizadas utilizando diferentes metodologias
foram capazes de identificar relagées causais entre as variaveis em estudo.

Palavras chaves: bovinos de corte, caracteristicas de carcacga, caracteristicas de
qualidade de carne, locos de caracteristicas quantitativas, modelos de equacdes es-
truturais, modelos gréficos, redes Bayesianas.



CAUSAL LEARNING TECHNIQUES USING MULTI-OMICS DATA FOR CARCASS
AND MEAT QUALITY TRAITS IN NELORE CATTLE

ABSTRACT - Quantitative traits and genotypes information have been collected for
each animal and used to identify genome regions related to phenotypes variation. How-
ever, these investigations are, usually, performed based on correlation or association
statistical tests, which do not imply in causation. In order to fully explore these infor-
mations, powerful causal inference methods have been developed to estimate causal
effects among the variables under study. Despite significant progress in this field in-
fer causal effect among random variables remains a challenge and some few studies
have explored causal relationships in quantitative genetics and animal breeding. In
this context, two studies were performed with the following objectives: 1) Search for
the causal relationship among carcass yield and meat quality traits using a structural
equation model (SEM), under linear mixed model context in Nelore cattle, and 2) Re-
construct gene-phenotype networks and perform causal network analysis through the
integrating of phenotypic, genotypic, and transcriptomic data in Nelore cattle. For the
first study, a total of 4,479 animals with phenotypic information for hot carcass weight
(HCW), longissimus muscle area (LMA), backfat thickness (BF), Warner-Bratzler shear
force (WBSF), and marbling score (MB) traits were used. Animals were genotyped us-
ing BovineHD BeadChip and GeneSeek Genomic Profiler Indicus HD - GGP75Ki. For
causal inference using SEM a multistep procedure methodology was used as follow: a)
a standard multi-trait model for studied traits was fitted to access the posterior residual
(co)variances, b) the Inductive Causation (IC) algorithm was used to infer causal struc-
tures between traits using the posterior residual (co)variances, and c) from the selected
causal structure retrieved by the IC algorithm the SEM was fitted. Applying 95 %, 90 %
and 85 % highest posterior density (HPD) the same graph was detected by the IC algo-
rithm with undirected links between BF with HCW and MB. Extra link between WBSF
and HCW and the direction between BF and HWC were identified using narrow HPD in-
terval (80 %), whereas the link between BF and MB remained undirected. Two different
SEM were fitted based on the causal network retrieved by the IC algorithm with either
arrow BF — MB or BF <~ MB. The most feasible SEM comprise the following links
between traits: WBSF — LMA, WBSF — HCW, HCW — LMA, BF — HCW, and BF —
MB, with structural coefficients posterior means equal -0.29, 0.43, 0.10, 1.92, and 0.03,
respectively. The final SEM revealed some interesting relationships among the traits,
and the causal effects suggest that interventions on WBSF and BF would direct affect
HCW and LMA. For the second study, a total of 4,599 animals with phenotypic (LMA,
BF, and WBSF) and genotypic (as previously described) information were used. RNA
sequen-cing (RNA-Seq) for 80 Nelore cattle muscle tissue samples was carried out
by lllumina HiSeq 2500 System to produce 2x100 base pairs paired-end reads using
muscle ti-ssue sample. Gene-phenotype networks and causal network analysis were
performed using a three-step approach as follow: a) genome scan analyses to identify
the association between genotypic and phenotypic data (pQTL — phenotype quanti-
tative trait loci mapping), and between genotypic and gene expression data (eQTL —
expression quantitative trait loci mapping). The markers effects estimated in every sin-
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gle pQTL mapping for the phenotypes studied (LMA, BF, and WBSF) were used to
perform a multi-trait analysis. b) significant regions from both QTL mapping (multi-trait
and eQTL) were co-localized, and c) network reconstruction using causal structural
learning algorithm incorporating LMA, BF, WBSF eQTL and gene expression traits was
performed. From the multi-trait analysis, 14 genome regions were significant across
LMA, BF, and WBSF and 19 cis-eQTL were overlapping five of the genome regions.
Based on the cis-eQTL position (the most significant in each genome region), thirty-two
nearby genes were identified. Integrating phenotypes, genotypes and gene expression
data the inferred network indicated that the rs137704711, located in chromosome 20,
affected the three phenotypes (LMA, BF, and WBSF), and the rs133894950, located
in chromosome 16, affected BF through the expression of several genes located in dif-
ferent chromosomes. The causal inferences performed using different methodologies
were able to identify important causal relationships among the variables under study.

Key words: beef cattle, Bayesian networks, carcass traits, graphical models, meat
quality traits, quantitative trait loci, structural equation models.



CHAPTER 1 - GENERAL CONSIDERATIONS
1.1 INTRODUCTION

The whole bovine genome sequencing and advances in technologies have en-
abled high-density bovine genotyping. High-density arrays of SNP markers (single nu-
cleotide polymorphism) made possible to identify several genome regions, also termed
as phenotype quantitative trait loci (pQTL), for carcass and meat quality traits through
genome-wide association studies (GWAS) in different breeds (KIM et al., 2011; LU et
al., 2013; MAGALHAES et al., 2016; FERNANDES JUNIOR et al., 2016; SANTIAGO
et al., 2017; HAY; ROBERTS, 2018). However, the identified pQTL for complex traits
only account for a small portion of phenotypic variation (MANOLIO et al., 2009) and
they are not necessarily true causal variants (AINSWORTH; SHIN; CORDELL, 2017).
In addition, the majority pQTL identified were found to reside in non-coding regions (in-
tergenic and intronic) of the genome (NICA; DERMITZAKIS, 2013). One explanation
for this pQTL trait association is that such pQTL modify cis-regulatory sequences and
thereby change the expression levels of one or more target genes (INNOCENTI et al.,
2011).

Gene expression variation is abundant in all organisms and plays essential
roles in several important processes responsible for the phenotypic variability (Gl-
LAD; SCOTT; JONATHAN, 2008; INNOCENT!I et al., 2011). In order to understand
this systematic process, it is important to expand the type of traits studied (PENA-
GARICANO et al., 2015). RNA expression (RNAseq) at the population level, accessed
by high-throughput DNA sequencing technology, is one of such type of trait, providing
nucleotide-level resolution of gene expression across the entire transcriptome. Gene
expression traits combined with genotype data made possible to identify thousands
of expression quantitative trait loci (eQTL) through eQTL mapping (BOUWMAN et al.,
2018; CESAR et al., 2018; HIGGINS et al., 2018). In summary, eQTL mapping enables
to investigate the effect of genotype on gene-expression levels which may affect phe-
notypes (NICA; DERMITZAKIS, 2013). Moreover, by combining both QTL mapping
might unravel genetic architecture of the traits and gene network (GILAD; SCOTT;
JONATHAN, 2008; HUANG; ZHENG; PRZYTYCKA, 2010).

Even with the availability of all these biological information and computational re-
sources, causal relationships among variables have not been widely explored (PENA-
GARICANO et al., 2015; BADSHA; FU, 2019). To infer causation is required a ran-
domized experimental design (FISHER, 1926). However, the randomization of alleles
during meiosis (Mendelian randomization) ensures the unidirectional influence of geno-
type on phenotype (HAGEMAN et al., 2011; ROSA et al., 2011). Mendelian random-



ization is analogous to a randomized experimental design, providing a set used to infer
causality using Fisher’s statistical framework (ROSA et al., 2011). In this context, differ-
ent approaches have been proposed for inferring causal relations using multiple phe-
notypes and genotypes information, including structural equation models (GIANOLA;
SORENSEN, 2004; VALENTE et al., 2010) and Bayesian Networks (PEARL, 1988).
The objective of this study was to search for causal network underlying carcass and
meat quality traits in Nelore cattle, applying causal learning techniques using pheno-
typic, genotypic and transcriptomic data.

1.2 LITERATURE REVIEW

1.2.1 Linear mixed models

Linear mixed models (LMM) are an extension of traditional linear models com-
bining fixed and random effects modeled jointly (LAIRD; WARE, 1982). For a single
trait LMM can be presented as:

y=XB+Zu+e (1.1)

where y is a n x 1 vector of observations (n is the number of observations), 5 is a p x
1 vector of fixed parameters (p is the number of fixed parameters), u is a g x 1 vector
of unknown random effects, X and Z are known incidence matrices with dimension n
x p and n x q related to § and u, respectively, and e is a n x 1 vector of residual terms.
For LMM, usually is assumed that u and e are independent and normally distributed
with mean zero and variance-covariance matrices equal to G and R, respectively. The
prediction of random effects are given by the conditional expectation of u given the
data, E(u | y). The joint distribution of y and u is a multivariate normal such as:

R I

where V = ZGZ' + R, and following multivariate normal distributions properties, E(u |
y) is given by:

vV ZG
GZ' G

Y

E(ul|y) = E(u)+ Cov(u,y " \War ' (y)(y — E(y)), (1.3)
= Cov(u,y "\War ' (y)(y — E(y)),
=GZ'V i y— XB).

Assuming that G and R are known and u and e are normally distributed, the density of
the distribution of y is given by:

1
Fy:0) = (2m)"/2|ZGZ' + R|V/?

exp {%[(y— XBY(2GZ' + Ry - Xﬁ)]} (1)



where ¢ is the vector of parameters (u, § and G) and the joint probability density func-
tion, f(y,u) = f(y | u) f(u) is given by:

1
(27)"/2| R| /2

1 1 I—1
x OrElERE exp{iu G u}

The logarithm of equation (1.5) is given by:

flyl v = e {§ly-Xo- 20y - xo-zul} o

1
— 5 (log|R[ + log|G)

z 2 (1.6)
- 5(y'R—ly— 2y 'RXB—2y' R Zu+ 28 X'R ' Zu

+5/X/R71Xﬁ+u /Z/Rflzu_i_ u /Gflu)

oy u) = % o log(2r)

Deriving this equation in 5 and u and equating to 0 yields

6

~

X'RX X'R™1Z
Z'R'X ZR'Z+G!

X/R—ly
Z/Rfly

(1.7)

From equation (1.7) is possible to obtain the best linear unbiased estimator
(BLUE) of 3, given by

B — [X/R—IX _X/R—lz(Z/R—IZ+G—l)—lz/R—lz] (18)
v [X'RYy - X'R'Z(ZR'Z+G Y ' Z Ry,

and it is also possible to obtain the best linear unbiased predictor (BLUP) of u as
= (ZR'Z+GH ' ZR Yy Xp). (1.9)

LMM are widely used in quantitative genetics to predict additive genetic effects
and estimating genetic parameters, take into account environmental and genetic infor-
mation (HENDERSON et al., 1959). In this context, animal model has been success-
fully used in quantitative genetics and animal breeding to predict breeding values for all
animals, not only for individuals with known phenotypes. For only one phenotype and
a single observation per subject, the animal model can be represented as in equation
(1.1). However, the vector y represents the observations, 5 the environmental effects
(i.e. contemporary groups, age and others), u the breeding values and e the resid-
ual effects, usually assumed independent across individuals. The residual covariance



structure can be expressed as R = | ¢ where | is an identity matrix, and o2 is the
residual variance and the covariance among the breeding values is represented by G.
The matrix G is considered as A o2, where A is the additive genetic relationship matrix.
Replacing G! = A™! ¢2 and R™! = Io? in equation (1.7), the mixed model equation
(MME) is reduced to:

B

u

o2 _ 1—h?

where A = % = 1-. The h* represent the proportion of the total phenotypic variance
that is due to additive genetic effects. The matrix A~* can be directly constructed from
the pedigree information, and therefore inverting the typically large A is not required

(HENDERSON et al., 1959; HENDERSON; QUAAS, 1976).

X'X X'Z
Z'X 7'7+ A7\

X'y
Z'y

(1.10)

The animal model can be extended to more than one trait per subject (HEN-
DERSON; QUAAS, 1976; SCHAEFFER, 1984). Considering t traits for each subject
as an example, equation (1.1) can be rewritten as:

where yi., Xk, Br, £k, Ux and e, follows the same definitions previously described and k
is the index for each trait k = 1, 2, ..., t. The LMM that jointly accounts for the t traits is
given by:

y=Xpg+Zu+e (1.12)

where y =y, Vo', ., Vi'l, B =151, B2’y -, B, u=[w’, u’, ..., u,'land e = [e,, &, ...,
e;’]. The X and Z incidences matrix are:

X=1{. . . . |edZ=|_

In addition, it is assumed that the variance of u and e are:

Go® A 0
0 E®I

U
Var

, (1.13)

e

where G and E are the genetic and residual variance-covariance matrices, respectively.



1.2.2 Causal inference

Statistic framework has been widely used in different fields to make inferences
from observational data. Associations among variables, for example, can be inferred
using some type of statistical approach, which help researchers to make conclusions
about how much the variables under study are connected (VALENTE et al., 2013).
These associations are quite often based on correlation and have been efficiently per-
formed by standard statistical models (PENAGARICANO et al., 2015). Even though
two variables (X and Y), are strongly correlated, it does not express the causal effect
of X onY, for example. This is a well-known proverb concerning scientific inquires and
statistics states that “correlation does not imply causation” (ROSA; VALENTE, 2013).
Causation goes deeper and the main goal of causal analysis is to infer probabilities
under conditions that are changing, such as external interventions (PEARL, 2010).

Sewall Wright (WRIGHT, 1921) was the pioneer inferring causality thought path
analysis. After the work of Wright, causation has not been longer explored by re-
searcher until the year 2000, when Judea Pearl (PEARL, 2000) returned the con-
cept of causality in the scientific community (BARROWMAN, 2014). Within the last
decades, with development of computers, tremendous progress has been made in
developing statistical methods and efficient algorithms for causal inference (WIEDER-
MANN; DONG; vonEye, 2019). Causality has been inferred in many different ways for
economist, epidemiologist, biologist and other sciences (SPIRTES, 2010; BARROW-
MAN, 2014). In livestock, not different of others areas, there are many scenarios in
which the central goal is to investigate causal effects.

Although many statistical methods have been developed, infer causal effects is
a challenge because the observed association between a causal variable and an out-
come can be due to background confounding factors, do not reflecting causal effects
(PEARL, 2010). Randomized experiments (FISHER, 1926) are a powerful approach for
dealing with potential confounders (ROSA; VALENTE, 2013). Such controlled experi-
ments impose equal probability of causal variable levels in which subjects are randomly
distributed into experimental group, allowing not only test the treatment effects but also
estimate their magnitude (FISHER, 1971). However, randomized experiments may be
not always feasible, legal, ethical, or logistical constraints (ROSENBAUM, 2010), and,
therefore, in such cases, an alternative is to investigate causality from observational
data (ROSA; VALENTE, 2013).

Farmers are routinely collecting data for breeding purposes such as phenotypic,
environmental, and management variables. From this data we can explore for exam-
ple the causal effects of environmental and management factors in livestock produc-



tion as well as how phenotypes are connected with each other (ROSA; VALENTE,
2013). Correction for confounding factors can be achieved by using appropriate sta-
tistical methods, and, therefore observational data from farmers might be explored for
causal inference (ROSA; VALENTE, 2013). In quantitative genetics many researches
have explored causal effect among different phenotypes and genomic information for
different species (de los CAMPOS; GIANOLA; HERINGSTAD, 2006; de los CAM-
POS et al., 2006; VARONA; SORENSEN; THOMPSON, 2007; WU; HERINGSTAD;
GIANOLA, 2008; HERINGSTAD; WU; GIANOLA, 2009; MATURANA et al., 2009; WU;
HERINGSTAD; GIANOLA, 2010; VALENTE et al., 2011; INOUE et al., 2016; INOUE;
HOSONO; TANIMOTO, 2017; PENAGARICANO et al., 2015). Within the methodology
available for causal inference, structure equation model and Bayesian network are the
most used in the literature.

1.2.2.1 Structural equation model

Structure equation models (SEM) is as extensions of the standard multiple-trait
models (MTM) proposed by Henderson et al. (1959), providing a general statistical
modeling technique to account for causal associations between variables, which are
often not revealed by MTM (WRIGHT, 1921; HAAVELMO, 1943; ROSA et al., 2011).
SEM was described in quantitative genetics context by Gianola e Sorensen (2004) to
account for possible feedback or recursive relations among traits. Following the work
of Gianola e Sorensen (2004), SEM has been applied to different species in multi-trait
mixed models settings (de los CAMPOS; GIANOLA; HERINGSTAD, 2006; de los CAM-
POS et al., 2006; VARONA; SORENSEN; THOMPSON, 2007; WU; HERINGSTAD;
GIANOLA, 2008; HERINGSTAD; WU; GIANOLA, 2009; MATURANA et al., 2009).

To fit a SEM, causal structure coefficients describing qualitatively the causal
relationships between variables must be specified a priori. Causal structure is a subset
of traits with causal influence on each phenotype under study (VALENTE et al., 2010).
The causal structure can be represented as a directed graph, in which nodes are the
traits studied and directed edges between nodes represent causal relationships among
traits (PEARL, 2000) as depicted in Figure 1.1.

The example presented in Figure 1.1 can be written as a set of structural equa-
tions given by:
Yy, =Bz + €
Yo = Aa1ly + Paza + € (1.14)
V3 = A3y + Azalp + B33 + €3

where ’s represent the parameters for explanatory variables (fixed effects) and \’s are
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Figure 1.1 — Example of a causal structure for three traits (y’s), where x’s and e’s rep-
resent known explanatory variables and residual factors affecting pheno-

typic traits, respectively (Adapted from Rosa et al. (2011)).

structural coefficients representing the magnitude of the casual effects among y’s. The
set of structural equations (SEM) can be represented in matrix notation as:

y=Ay+Xp+e (1.15)

where y is a vector with observations, A is a matrix with the coefficients A\, X are ap-
propriate matrix with the explanatory variables, g is a vector with model parameters,
e is a vector of residuals. Extending the equation in (1.15) for the quantitative genet-
ics context, SEM with causal structure and random additive genetic effects for t traits
(GIANOLA; SORENSEN, 2004) can be written as:

V, = Ay, + XiB+ U; + € (1.16)

where y; is a (t x 1) vector of phenotypic observations on subject i; A is a (t x t) ma-
trix with zeroes on the diagonal and with structural coefficients or zeroes on the off-
diagonal (the causal structure defines which entries contain free parameters and which
entries are constrained to 0); 3 is a vector of fixed regression coefficient(s), X; contains
the covariates for the i subject, u; is a (t x 1) vector of random additive genetic effects
for the ith subject, and ¢, is a (t x 1) vector of model residuals for the ith subject. For n
animals the SEM in (1.16) can be rewritten as:

y=A®L)y+XB+Zu+e (1.17)

where y, u and e are vectors of phenotypic traits, and additive genetic and residuals
effects for t traits, sorted by trait and subject within trait, 5 is a vector containing the
fixed effects, and X and Z are incidence matrices relating effects in g and u to y. For u

and e are assumed:
HNN“O Go®A 0 } (1.18)
e 0

0 Yy ® I,

Y




where G, and ¥, are the additive genetic and residual variance-covariance matrices,
respectively. Rewritten the equation in (1.17) (VALENTE et al., 2010) the equivalent
reduced model as in Gianola e Sorensen (2004) can be obtained as follow:

— L= (A@ L)) ' X B4 [Lin — (AR L) " Zu~+ I — (A® 1y,)] e

The resulting sampling distribution of y given the location parameters and the residual
covariance matrix is:

p(y|A, ﬁa u, \IJO) ~ N[Itn - (A ® ]tn)]_l(Xﬁ + ZU), []tn - (A ® ]tn)]_lqj[]tn - (A ® Izn)]/_l
1.20)

where ¥ = ¥, ® I,. The location and dispersion parameters in the reduced SEM (1.19)
are transformed into parameters of a standard MTM (VARONA; SORENSEN; THOMP-
SON, 2007; WU; HERINGSTAD; GIANOLA, 2010; ROSA et al., 2011) as follow:

Y=L —N'XiB+ (L — N u+ (L —A) e (1.21)
=i + U + €

where pf = (I, -A)™ X; g, uf =(l, - A)™" u; and e = (I, - A)~! e;. The joint distribution

of uf and e is given by:
[u] ~ N{ [0 } (1.22)
e 0

with G = (I, - A)™* Gy (L - A)~' and R =(l, - A)™' ¥, (I, - A)~'. The vectors u, u;
and e; are the fixed, additive genetic and residuals effects, respectively, and G; and
R; are respectively the genetic and residual covariance matrices of an MTM (ROSA et
al., 2011). As showed in equation (1.17), SEM has additional parameters in A, which
result in an unidentifiable likelihood function (ROSA et al., 2011). In order to achieve
the identifiable likelihood function it is possible to introduce constraints in SEM through
coercing the residual covariance matrix ¥, to be diagonal (WU; HERINGSTAD; Gl-

ANOLA, 2010; ROSA et al., 2011).

Gy 0
0 R

Y

Even fitting SEM with few traits, the space of possible causal hypotheses is
typically very large (SHIPLEY, 2002). The authors that followed the work of Gianola e
Sorensen (2004), pre-selecting the causal structure based on biological knowledge and
not exploring the full space of possible structures (VALENTE et al., 2010; VALENTE et
al., 2011). In order to overcome the problem of causal structure selection, Valente et al.



(2010) adapted the inductive causation (IC) algorithm (VERMA; PEARL, 1990; PEARL,
2000) to mixed-models scenarios. The IC algorithm uses the notion of d-separation to
explorer the space of causal hypotheses so as to arrive to a causal structure (PEARL,
2000). Based on a given correlation matrix, this algorithm perform conditional inde-
pendence tests between variables, which return a partially oriented graph as output
used as a prior in SEM (ROSA et al., 2011). However, the IC algorithm cannot be ap-
plied directly to the joint distribution of the phenotypes because genetic correlations,
for example, may act as confounders (VALENTE et al., 2010). By this reason the au-
thor proposed to select the causal structure based on the residual variance-covariance
draw from a MTM (see more details in Valente et al. (2010).

In summary, the overall statistical approach proposed by Valente et al. (2010)
to search for a causal structure in a mixed models context, using samples from the
posterior distribution of R} as input to the IC algorithm consists of three steps:

¢ Fit a Bayesian MTM in order to obtain posterior samples of R;.

e The IC algorithm is applied on R; matrix to make the statistical decisions required.
Specifically, for each query about the statistical independence between variables
a and b given a set of variables S and, implicitly, the genetic effects:

a) Obtain the posterior distribution of residual partial correlation p(,s). These
partial correlations are functions of R;;. Therefore their posterior distribution can
be obtained by computing the correlation at each sample drawn from the posterior
distribution of A;.

b) Compute the 95% Highest Posterior Density (HPD) interval for the posterior
distribution of p(, 4/s)-

c) If the HPD interval contains 0, declare p( 45 as null. Otherwise, declare a
and b as conditionally dependent.

e From the selected causal structure fit the SEM as in Gianola e Sorensen (2004),
such that causal relationships (i.e., recursive effects) can be estimated.

After select the causal structure and achieving parameter identifiability, inferences about
model parameters may be performed applying standard statistical methodologies as
proposed by Sorensen e Gianola (2002).

1.2.2.2 Bayesian network

Bayesian network (BN) is an annotated directed acyclic graph (DAG) - arrows
must be directed without circles, which combines the rigor of a probabilistic distribu-
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tion with the intuitive representation of relationships among variables, given by a graph
(PEARL, 1988). BN is a class of graphical model composed by two parts: a set X = X,
Xs, ..., X, of random variables describing the quantities of interest, and a graph G = (V,
E) where each vertex v € V, also called node, is associated with one of the random
variables in X, and each edge e € E, also called arc, is used to express the depen-
dence structure of the data, i.e., dependence relationships among X’s. In summary,
BN is graphical representation of (in)dependencies among random variables (ZHANG;
POOLE, 1996).

The dependence structure of the data expressed by arcs and its graphical repre-
sentation is given in terms of conditional dependence and graphical separation (PEARL,
1988). Considering the example in Figure 1.2, C and D are the parents of node E,
whereas F and G are children due to the directed edges among these nodes. In the ex-
ample, each node is conditionally independent of its non-descendants given its parents.
Probability distributions in BN are represented by the Markov condition (NEAPOLITAN,
2003). The Markov condition is a result descending from the definitions of directed
separation or d-separation (PEARL, 1988). Based on the Markov condition, the joint
probability distribution for all random variables can be decomposed into a product of
conditional probabilities (KORB; NICHOLSON, 2010). The chain rule of probability for
continuous random variable is

P
fo(x1, @, oy ) = fri(zi|xy, xo, ooy Tpy)
1,2 g 1, T2 1 (1.23)

fo(X) = H f2i(Xi| Xpaiy)),

where local distribution is associated with a single node X; and depends only on the
joint distribution of its parents X, in G. This decomposition holds for any Bayesian
network, regardless of its graph structure.

In the BN context statistic modeling, also called learning, is performed in two dif-
ferent steps, which correspond to model selection (structure learning) and parameters
estimation (parameter learning) based on the structure retrieved in the first step (SCU-
TARI; STRIMMER, 2011). Structure learning consists in to find the graph structure that
encodes the conditional independencies present in the data. Parameter learning es-
timates the parameters of the local distribution, since the network structure is known
from the previous step (KOLLER; FRIEDMAN, 2009; KORB; NICHOLSON, 2010). To
learn the structure of BN from the data, many algorithms classified as constraint-based
and score-based have been proposed. Here only constraint-based structure learning
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Figure 1.2 — Directed acyclic graph for nine random variables, where C and D represent
the parents, F and G are the children, and the Markov blanket of node E
(Adapted from Scutari e Strimmer (2011)).

approach will be covered.

Constraint-based algorithms estimate the conditional independence relation-
ships among variables assuming that the graph underlying the probability distribution is
able to determine the correct network structure (SCUTARI; STRIMMER, 2011). Based
on the observed data this constraint-based algorithms start by determining a skeleton
(Markov network) of the underlying network. However, as the number of random vari-
ables typically used is large and the independence test is performed for each node, the
search space to determine the skeleton has an exponential growth (MOROTA et al.,
2012). For this reason Tsamardinos, Aliferis e Statnikov (2003) proposed to impose a
constraint in the search space by restricting up to the Markov blanket (MB) of a node.
The MB of a node E, denoted by MB(E), is a minimal set of nodes consisting of E’s
parents and its children (PEARL, 1988) as the example in Figure 1.2.

The knowledge of the MB(E) for example is enough to determine the probability
distribution of E, which means that the values of the remaining variables are superflu-
ous (TSAMARDINOS; ALIFERIS; STATNIKQOV, 2003). Several algorithms have been
proposed to identify the MB including Koller—Sahami (KS) (KOLLER; SAHAMI, 1996),
grow—shrink (GS) (MARGARITIS; THRUN, 1999), incremental association Markov blan-
ket (IAMB) (TSAMARDINOS; ALIFERIS; STATNIKOV, 2003) and fast-IAMB (YARA-
MAKALA; MARGARITIS, 2005). IAMB algorithm has its foundation in the IC algorithm
(VERMA; PEARL, 1990) and consists of two phases, a forward and a backward one.
The forward or growing phase starts with an empty set and added candidates of MB(E)
to a current Markov blanket (CMB) that maximizes a heuristic function (TSAMARDI-
NOS; ALIFERIS; STATNIKOV, 2003). For every variable that is a member of the MB,
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variable J for example, the heuristic function should return a non-zero value, which is
a measure of association between J and E given CMB. According to Tsamardinos,
Aliferis e Statnikov (2003) the heuristic function needs to be informative and effective
in order to have a small set of candidate variables as possible after growing phase.
Using this heuristic function the algorithms do not spend time considering irrelevant
variables and do not require sample larger than necessary to perform conditional tests
of independence.

Once the algorithm found a variable that is associated with the target node,
based on the conditional independence test, it will include this candidate in the CMB
and start again from the first variable in the data set. The backward or shrinking phase
is a refinement step that removes one-by-one false-positive node from the CMB by
a series of conditional independence tests. After identified the MB(E), the algorithm
needs to compute the network structure given the Markov blanket determining the
nodes in the Markov blanket that are actually direct parents and children of node E
(TSAMARDINOS; ALIFERIS; STATNIKOV, 2003). Details about the heuristic function
as well as the IAMB algorithms can be found in Tsamardinos, Aliferis e Statnikov (2003)
and Morota et al. (2012).

1.3 OBJECTIVES

1.3.1 General objective

The objective of this study was to search for causal network underlying carcass
and meat quality traits in Nelore cattle, applying causal learning techniques using phe-
notypic, genotypic and transcriptomic data.

1.3.2 Specific objectives

e Search for causal relationship among carcass and meat quality traits using struc-
tural equation model, under linear mixed model context.

e Reconstruct gene-phenotype networks and perform causal network analysis by
integrating phenotypic, genotypic, and transcriptomic data.
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CHAPTER 2 - CAUSAL RELATIONSHIPS AMONG CARCASS AND MEAT
QUALITY TRAITS USING STRUCTURAL EQUATION MODEL IN NELORE CATTLE

2.1 ABSTRACT

Knowledge regarding any potential causal relationships among carcass and
meat quality traits is important to improve Nelore cattle productivity. However, these
traits have been studied in terms of linear association, without considering the recur-
sive and simultaneous relationships among them. The objective of this study was to
investigate the causal relationships among carcass and meat quality traits using struc-
tural equation model, under linear mixed model context, in Nelore cattle. A total of 4,405
animals with phenotypic information for hot carcass weight (HCW), longissimus muscle
area (LMA), backfat thickness (BF), Warner-Bratzler shear force (WBSF), and marbling
score (MB) traits were used. Causal structures were investigated applying the Inductive
Causation (IC) algorithm on the posterior distribution of the residual (co)variance ma-
trix, draw in a standard Bayesian multi-trait model (MTM). Applying 95 %, 90 % and 85
% highest posterior density (HPD) the same graph was detected by the IC algorithm,
which included undirected links between BF with HCW and MB. Extra link between
WBSF and HCW, and the direction between BF and HWC were identified using HPD
interval of 80 %, however, the link between BF and MB remained undirected. Two
structural equation models (SEM) were fitted based on the causal network retrieved
by the IC algorithm, with either the arrow BF — MB or the arrow BF < MB. The most
feasible SEM comprises the following links between traits: WBSF — LMA, WBSF —
HCW, HCW — LMA, BF — HCW, and BF — MB, with structural coefficients posterior
means equal to -0.29, 0.43, 0.10, 1.92, and 0.03, respectively. The final SEM revealed
causal relationships among the traits, and the causal effects suggest that interventions
on WBSF and BF would direct affect HCW and LMA.

Key words: beef cattle, causal effect, inductive causation, structural coefficients

2.2 INTRODUCTION

Nelore cattle (Bos taurus indicus), the most important breed in Brazil, present
low carcass and meat quality grade compared to Bos taurus taurus, affecting the Brazil-
ian beef industry (O’'CONNOR et al., 1997; ELZO et al., 2012; CASTRO et al., 2014;
PEREIRA et al., 2015). With the consumer markets and beef industry placing more
emphasis on these traits (DELGADO et al., 2006; SMITH et al., 2007), studies have
been performed to estimate genetic variability and correlations necessary to design a
scheme to improve Nelore cattle carcass and meat quality grade (CASTRO et al., 2014;
TONUSSI et al., 2015; GORDO et al., 2016; GORDO et al., 2018). But, multiple traits
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are analyzed through multi-trait mixed model (MTM) (HENDERSON, 1976), allowing
to infer only the symmetric linear association among random variables (VALENTE et
al., 2010; ROSA et al., 2011). Linear associations are not the only relationship present
in biological systems, which can be also recursive and simultaneous and, therefore,
these potential causal relationships among traits need to be investigated (ROSA et al.,
2011).

Causal associations can be explored by fitting structural equation models (SEM)
proposed by Wright (1921) and Haavelmo (1943), and adapted to the quantitative ge-
netics mixed models context by Gianola e Sorensen (2004). More than to identify re-
cursive and simultaneous relationships among phenotypes, SEM also allows predicting
the behavior of complex biological systems (GIANOLA; SORENSEN, 2004; ROSA; VA-
LENTE, 2013). Following the work of Gianola e Sorensen (2004), Valente et al. (2010)
proposed a methodology to search for recursive causal structures in MTM, allowing to
qualitatively describe the causal influence of a subset of phenotypes on each studied
trait (VALENTE et al., 2011). This approach has been used by many authors to fit SEM
in different species and traits (VALENTE et al., 2011; BOUWMAN et al., 2014; INOUE
et al., 2016; INOUE; HOSONO; TANIMOTO, 2017), and they have identified important
causal relationships among the studied traits. Thus, the objective of this study was
to investigate the causal relationships among carcass and meat quality traits using a
structural equation model, under linear mixed model context, in Nelore cattle.

2.3 MATERIAL AND METHODS

All animal procedures were approved by the Sdo Paulo State University (Un-
esp), School of Agricultural and Veterinary Science Ethical Committee (Approval No.
18.340/16).

2.3.1 Data collection and editing procedure

Phenotype and pedigree information from commercial herds located in the south-
east, mid-west and northeast of Brazil were used. The animals (bulls), born between
2008 and 2014, were raised on pasture conditions and finished in feedlot system for
around 90 days to be slaughtered at, approximately, 2 years of age in commercial
slaughterhouse. Hot carcass weight (HCW), longissimus muscle area (LMA), backfat
thickness (BF), Warner-Bratzler shear force (WBSF) and marbling score (MB) traits
were studied. Briefly, at slaughter, HCW was recorded for each animal and after 24 to
48 hours chill, from the slaughter, samples from longissimus thoracis muscle between
12/13" ribs were collected and frozen at -20 °C. From steaks of 2.54 cm thickness and
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using a plastic grid (squared with 1 cm?) placed on the sample, LMA was measured as
the sum of all counted squares. Using a caliper, the layer of subcutaneous fat on the
steaks was measured and the total of millimeters was used as BF trait. The degree of
marbling (MB) was determined, according to the United States Standards for Grades
of Carcass Beef (USDA, 1997), as a score on a scale from 1 (practically absent) to 10
(very abundant). For WBSF the steaks were cooked in an oven (180 °C) to an internal
temperature of 71 °C. After 24 hours cooling to 2 °C, eight 1.27 mm meat cylinders
were obtained from each cooked sample and sheared with a V blade attached to a
WBSF machine (WHEELER; KOOHMARAIE; SHACKELFORD, 1995). Average of the
eight meat cylinders were used as WBSF trait. Contemporary group (CG) was defined
by year and farm of birth, farm and management group at yearling and slaughter date.
Observations with three standard deviations above or below to the mean of their CG
and CG with less than three animals were removed. A summary of the data structure
used is shown in Table 2.1.

Table 2.1 — Descriptive statistical for the traits studied.
Traits Mean SD Min.  Max.
HCW (kg) 279.30 27.74 181.8 374.9
LMA (cm?) 68.01 7.87 40.0 96.0
BF (mm) 4.75 2.17 1.0 14.0
WBSF (Kg) 6.44 1.90 1.8 11.9
MB (score) 2.82 0.48 1.9 4.8

Hot carcass weight (HCW), longissimus muscle area
(LMA), backfat thickness (BF), Warner-Bratzler shear
force (WBSF), and marbling score (MB) traits. Standard

deviation (SD), minimum (Min), and maximum (Max) for
4,405 animals sourced in 148 contemporary groups.

A total of 5,542 animals (1,128 sires and 4,414 bulls) were genotyped using
BovineHD BeadChip (IIIumina®, Inc., San Diego, CA, USA) and GeneSeek® Ge-
nomic Profiler Indicus HD - GGP75Ki (Neogen Corporation, Lincoln, NE, USA) which
contains 777,962 and 74,677 SNP markers distributed across the genome, respec-
tively. Animals genotyped with GGP75Ki were imputed to BovineHD panel using FIm-
pute software (SARGOLZAEI; CHESNAIS; SCHENKEL, 2014), considering pedigree
information with an expected accuracy of imputation equal to 0.992 (CARVALHEIRO et
al., 2014). After imputation a quality control was performed excluding markers with call
rate lower than 0.98, deviations from the Hardy-Weinberg equilibrium (p-value < 107°),
with minor allele frequency lower than 0.03 and markers located in non-autosomal
chromosomes. Samples with call rate lower than 0.90 were also excluded. After quality
control 5,533 animals (4,405 with phenotype and genotype information) and 412,904
SNPs markers were used in the statistical analysis.
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2.3.2 Statistical analysis

Searching for causal structures in a mixed model context were performed by
following (VALENTE et al., 2010) in three steps: 1) fit a standard MTM to access the
posterior residual (co)variance (corrected for cofounder effects); 2) apply the IC algo-
rithm (VERMA; PEARL, 1990; PEARL, 2000) on the residual (co)variance posterior
samples to infer causal structures among traits; and 3) fit the SEM from the selected
causal structure retrieved by the IC algorithm. Genetic and residual (co)variances were
estimated by fitting a standard Bayesian MTM as follow:

y=XB+Zu+e (2.1)

where y is a vector of observations, 5 is a vector of systematic effect of CG and linear
terms for slaughter age (linear and quadratic effects), u is a vector of random additive
effects, eis a vector of random residuals and X and Z are known incidence matrices.
Random effects were assumed to be normally distributed u ~ N(0, G ® H) and e ~ N(0,
R ® 1), where G and R are the additive genetic and residual (co)variances matrices,
respectively, H is the relationship matrix combining pedigree and genomic information
(AGUILAR et al., 2010; CHRISTENSEN; LUND, 2010) and / is an identity matrix with
suitable dimensions. The inverse of the modified relationship matrix H (AGUILAR et
al., 2010) is defined as:

0 0

-1 _ p—-1
R PR
22

(2.2)

where A is the inverse numerator of the pedigree-based relationship matrix for all an-
imals, G ' represents the inverse of genomic relationship matrix and A, is the inverse
of the pedigree-based relationship matrix for genotyped animals. The G matrix was
created as proposed by VanRaden (2008): G=(M-P)M - P) /2 Z;’;l p;(1 - p;),
where M is is a matrix of genotypes for each animal (coded according to the numbers
of copies for the B allele) and P is a matrix with the second allele (p,) frequency, ex-
pressed as 2,;. In order to facilitate inversion a weighted G was used as proposed by
VanRaden (2008): G = 0.95G, + 0.05A,,. In addition, to make G proportional to As,
G was scaled based on A,, considering the diagonal mean of G equal to the diagonal
mean of Ay, and the off-diagonal mean of G equal to the off-diagonal mean of As,.

To select the causal structure, the IC algorithm was applied to the residual
(co)variances accessed using the MTM. The residual (co)variances draw by the MTM
were corrected for the confounding issues caused by additive genetic and fixed effects
(i.e. CG and age at slaughter) as described by Valente et al. (2010). In a Bayesian
approach, decisions about declaring partial correlation as null or not were made based
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on HPD intervals (correlation was declared null if the interval contained the value 0).
Four different HPD content magnitudes (80, 85, 90 and 95%) were applied to com-
pare the final causal structures, and to observe the structures that were more sensitive
to changes in HPD (VALENTE et al., 2010). The IC algorithm was implemented in R
program (R Core Team, 2017) by Valente e Rosa (2013).

Finally, using the causal structure inferred by IC algorithms, the structure equa-
tion model was fitted as proposed by Gianola e Sorensen (2004):

y=AQL)y+Xpg*+Zu +e (2.3)

where y, 8%, u*, e*, X and Z have meanings similar to those described for multi-trait
model. The vectors g*, u* and e* are effects (systematic and random effects) related
to each trait in y, however, they are not effects mediated by other traits (GIANOLA;
SORENSEN, 2004; ROSA et al., 2011; VALENTE et al., 2013). In addition Aisa t x t
matrix with zeroes on the diagonal and structure coefficients or 0 on the off-diagonal,
where t is the number of traits used. For structure equation model the join distribution of
vectors u* and e* were assumed to be normally distributed u* ~ N(0, G* ® H) and e* ~
N(0, R* ® 1), where G* is the structural equation model additive genetic (co)variances
matrix and R* is a diagonal matrix with the structure equation model residual variances
(residual covariances assumed to be zero). Such assumption on the residual covari-
ance matrix confers identifiability to the structure coefficients in the likelihood function
(INOUE et al., 2016).

For both models (MTM and SEM), marginal posterior distributions of genetic
and residual (co)variances were obtained by integrating a multivariate density function
in Gibbs2f90 program (MISZTAL et al., 2018). A Gibbs sampling chain with 300,000
samples was generated, with initial 20,000 samples discarded as burn-in and taken
each 2 iterates as thinning interval. The Gibbs chain convergence was verified by visual
inspection of the sample trace plots and by coda package in R (R Core Team, 2017)
using Heidelberger and Welch, and Geweke statistics convergence tests (PLUMMER
et al., 2006). The remaining 140,000 samples were used as posterior distribution of
the variance and (co)variance components in both models (MTM and SEM) and also
to characterize the structural equation model.

2.4 RESULTS AND DISCUSSION

Heidelberger and Welch, and Geweke statistical tests and trace plot visual in-
spection, indicated that Markov chains reached the convergence (results not shown).
The posterior means, modes and medians of the heritability estimates were similar
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for all traits showing symmetrical posterior distributions (Table 2.2). Another indicative
of the Markov chains convergence is associated to the Monte Carlo errors (MCE),
which were low for all the traits, indicating that chain size was suitable to obtain precise
estimates for the posterior parameters. Thus, the mean can satisfactorily represent
the properties of the parameters, reflecting the measures of central tendency of the
posterior marginal distribution. The posterior means and standard deviations of the

Table 2.2 — Posterior heritabilities (Mean) and standard deviation (PSD), mode, me-
dian, Monte Carlo error (MCE) and high posterior distributions (HPD) inter-
val for multi-trait model.

Traits Mean (PSD) Mode Median MCE HPD(95%)
HCW (kg) 0.17 (0.02) 0.16 0.17 0.00010 0.12t00.22
LMA (cm?)  0.38 (0.03) 0.38 0.38 0.00012 0.31t00.44
BF (mm) 0.26 (0.03) 0.26 0.26 0.00012 0.20t00.32
WBSF (Kg) 0.11(0.02) 0.11 0.11  0.00008 0.08t00.16
MB (score) 0.18(0.03) 0.17 0.18 0.00011 0.12t00.24

Hot carcass weight (HCW), longissimus muscle area (LMA), backfat thickness (BF),
Warner-Bratzler shear force (WBSF) and marbling score (MB) traits.

heritabilities estimated using MTM for carcass and meat quality traits are shown in
Table 2.2. Heritabilities for carcass traits were of low (0.17 for HCW) to moderate mag-
nitude (0.26 and 0.38 for BF and LMA, respectively) and for meat quality traits all the
estimates were of low magnitude (0.11 and 0.18 for WBSF and MB, respectively). The
estimated heritabilities for LMA, BF and MB traits were higher than those reported by
Gordo et al. (2016) and Gordo et al. (2018) using part of the same data. These author
reported lower heritabilities for HCW trait than those estimated in our study and similar
for WBSF trait. Heritabilities reported by Riley et al. (2002) and Smith et al. (2007) for
carcass traits in Brahman cattle were higher than those estimated in our study. For
meat quality traits, higher heritabilities than those estimated in this study have also
been reported for different beef cattle breeds (RILEY et al., 2002; DIKEMAN et al.,
2005; SMITH et al., 2007). The differences between heritabilities observed throughout
the studies, may be due to genetic aspect of the breeds, fitted model and also due to
environmental conditions that animals were submitted (i.e commercial and research
herds).

Total genetic and residual correlations estimated using MTM and direct genetic
correlations estimated using SEM are depicted in Figure 2.1. The highest total ge-
netic correlations estimated using MTM were between HCW with LMA and WBSF,
whereas using SEM the highest direct genetic correlations were between HCW with
LMA, BF, and WBSF. These estimates suggest that genes playing important roles to
produce heavier animals are partially the same or are linked to the set of genes that
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play roles to produce larger LMA and more tender meat. The remaining genetic corre-
lations among the traits studied were of low magnitude (-0.21 to 0.19), indicating that
selection for one trait will not result in a significant change on the other one. Overall, the
genetic correlations (total and direct) are different from the ones previously reported by
our group (GORDO et al., 2018) between carcass and meat quality traits, using part
of the same data. These differences might be due to the different number of animals
used in the studies. Smith et al. (2007) in Brahman cattle and Reverter et al. (2003)
in adapted (temperate and tropical) beef breeds reported different genetic correlations
compared with the results in this study. The highest residual correlation was observed
between HCW and LMA (0.29), whereas low to weak residual correlations were es-
timated among the remaining traits, ranging from -0.06 to 0.17. Nonetheless, due to
the wide amplitude of the highest posterior density region (results not shown), esti-
mated genetic correlations should be treated with caution. The causal structures used
as prior information to fit SEM were accessed based on the residual (co)variances
estimated in the MTM, using IC algorithm. After applying the described approach to
search for causal structures, based on different HPD interval contents, two almost fully
directed acyclic graphs were retrieved (Figure 2.2). Using 95, 90 and 85 % of HPD
interval the same graph was detected by the algorithm with undirected link of BF with
HCW (BF — HCW) and BF with MB (BF — MB) (Figure 2.2A). Narrower HPD interval (80
%) resulted in an extra link between WBSF and HWC (WBSF — HCW) and directed
the arrow between BF with HCW (BF — HCW), whereas the link between BF and MB
remained undirected (BF — MB) (Figure 2.2B). Using narrower HPD interval one could
expect more links being recovered and unshielded colliders should be detected by the
IC algorithm in Step 2 (see more details in Valente et al. (2010)). The edges conveyed
by the graphs shown in Figure 2.2 (A and B) were stable, since they were present for
every HPD interval (except for the extra link between WBSF and HCW). The direction
between BF and MB could be determined based on biological prior knowledge as in
Gianola e Sorensen (2004). But, regardless of the direction, in this case, there is no
more reasonable direction and this decision cannot be made on a statistical basis, once
both models are statistically equivalent (VALENTE et al., 2010). Therefore, based on
the graph depicted in Figure 2.2B, we fitted two SEM conditioned on the causal struc-
tures presented in Figure 2.2C (model A) and Figure 2.2D (model B) with a directed
link between BF and MB (BF — MB or BF + MB). The posterior variance compo-
nents (genetic and residual) and standard deviations for each trait from MTM and SEM
(model A and B), are presented in Table 2.3. Genetic and residual variance poste-
rior means from both SEM were similar. Posterior mean of SEM variances assigned
for LMA were smaller than those in MTM, since LMA was conditioned on WBSF and
HCW, as shown in Figure 2.2C and D. Smaller SEM variance was inferred for MB,
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Figure 2.1 — Posterior genetic correlation means for hot carcass weight (HCW), longis-
simus muscle area (LMA), backfat thickness (BF), Warner-Bratzler shear
force (WBSF) and marbling score (MB) traits, obtained using Multi-Trait
(top left) and Structure equation models 1 (bottom left) and 2 (bottom
right), representing the two models fitted using structure coefficients in-
ferred in Figure 2.2 (C and D). Residual correlation means (top right) are
shown only from multi-trait model.

when this trait was conditioned on BF, and for BF when conditioned on MB, accord-
ing to Figure 2.2C and D, respectively. Higher directed genetic variance was estimated
in SEM (model A and B) than in MTM for HCW trait. HCW are conditioned on other
two traits (WBSF and BF), which contribute for the genetic variability of HCW. As dis-
cussed in Valente et al. (2013), divergence in terms of variance components between
MTM and SEM is expected, since MTM estimate overall genetic effects (direct and in-
direct effects mediated by other phenotypic traits) and the SEM estimate only direct
effects (i.e. not mediated by other traits in the causal network). The posterior means of
genetic and residual variances estimated for WBSF and BF traits through the different
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Figure 2.2 — Phenotype network with 95, 90, 85 (A) and 80 % (B) of highest posterior
density intervals for hot carcass weight (HCW), longissimus muscle area
(LMA), backfat thickness (BF), Warner-Bratzler shear force (WBSF) and
marbling score (MB) traits. Network C and D are two structures between
BF and MB representing unshielded link observed in B.

models were similar, because these two traits were not conditioned on any other trait,
as shown in Figure 2.2C and D. Therefore, for these two traits, the equations in MTM
and SEM were similar. Differences in the variance components for the downstream
traits (i.e. LMA, HCW and MB or BF) were also observed by Bouwman et al. (2014)
and Inoue et al. (2016) for bovine milk fat acid and meat quality traits, respectively,
using the same approach proposed by Valente et al. (2010). The posterior means and
standard deviations, as well as the 95 % HPD intervals of the structural coefficients
inferred using SEM are presented inTable 2.4. Fitting model A and B (based on graphs
depicted in Figure 2.2C and Figure 2.2D, respectively) resulted in the same structural
coefficients. The deviance information criterion (DIC) proposed by Spiegelhalter et al.
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Table 2.3 — Posterior means and standard deviation (PSD) of the variance components
for multi-trait model (MTM) and structural equation model (SEM)

MTM SEM! SEM?

Traits Mean (PSD)  Mean (PSD) _ Mean (PSD)
Genetic
HCW 57.762 (9.284)  63.122 (9.613) 63.515 (10.074)
LMA 18.203 (1.831)  15.395 (1.568)  15.426 (1.575)
BF 0.791 (0.101)  0.788(0.103)  0.753 (0.100)
WBSF 0.210 (0.032)  0.203 (0.038)  0.201 (0.039)
MB 0.024 (0.004)  0.023 (0.004)  0.024 (0.004)
Residual
HCW 283.831 (9.581) 276.131 (9.448) 275.752 (9.626)
LMA 29.938 (1.392) 27.518 (1.216)  27.498 (1.215)
BF 2.264 (0.088)  2.267 (0.089)  2.227 (0.087)
WBSF 1.567 (0.046)  1.569 (0.046)  1.569 (0.046)
MB 0.110 (0.004)  0.107 (0.004)  0.110 (0.004)

Hot carcass weight (HCW), longissimus muscle area (LMA), backfat thickness (BF),
Warner-Bratzler shear force (WBSF) and marbling score (MB) traits. SEM1 represent
the model considering BF —+ MB and SEM2 as BF « MB.

(2002) takes the trade-off between model goodness-of-fit and corresponding complex-
ity of model into account, in which smaller DIC is preferable. Smaller DIC was observed
for model A (63,813.80) than for B (63,879.86) and MTM (63,883.89), suggesting the
directed acyclic graph with directed link of BF — MB (Figure 2.2C) was more feasible.
Therefore, the results from model A will be discussed from now on in terms of structure
coefficients )\, ; (\;; denotes a structural coefficient from the j*" trait to the i*" trait) and
biological reasons related to the causal effect among the studied traits. Structural coef-
ficients inferred based on the causal structure selected indicated that WBSF imposes
a positive causal effect over HCW (Aycw wrsr). The posterior mean of the magnitude
of change in HCW due to a 1 kg increase in WBSF was inferred as 0.43 kg (Table 2.4).
In turn, HCW imposes a positive effect on LMA (Apy4 zow), With a posterior mean of
0.10 cm?. This structure implies that WBSF presents also an indirect positive causal
effect on LMA. The causal structure indicates also that WBSF has a negative causal
effect on LMA (Apaawssr), with posterior mean of -0.29 cm?. The sign of the three
structural coefficients was the same as the sign of residual covariance among these
traits estimated in the MTM.

One possible biological explanation for the causal effect between WBSF and
HCW might be related to longissimus thoracis muscle fiber type. In Nelore cattle the
longissimus thoracis muscle have high proportion of MyHC-IIx and MyHC-lla fiber
types, which is related to the increase in muscle mass during postnatal growth as
well as tough meat (MARTYN; BASS; OLDHAM, 2004; OLIVEIRA et al., 2011; CHRIKI
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Table 2.4 — Posterior means, standard deviation (SD) and 95% highest posterior den-
sity (HPD) intervals of the structural coefficients

Structural Structural Equation Model 1 Structural Equation Model 2
coeHizies Mean SD HPD(95%) Mean SD HPD(95%)
ALMAHCW 0.10 0.006 0.081t0 0.11 0.10 0.008 0.081t00.11
Avawsse  -0.29  0.09 -048t0-0.10 -0.29 0.09 -0.49t0-0.10
Amewwsse 043 029 -0.12t01.00 0.43 0.27 -0.10t00.96
NHCW,BF 192 028 139t0246 192 028 1.37t02.49
AMB,BF 0.03 0.006 0.02t00.04 - -
ABF,MB - - - 0.66 0.11 0.451t0 0.88

Hot carcass weight (HCW), longissimus muscle area (LMA), backfat thickness (BF), Warner-

Bratzler shear force (WBSF) and marbling score (MB) traits. Here, \; ; denotes a structural
coefficient from the jt* trait to the " trait.

et al., 2012; PICARD et al., 2014). In addition, Guillemin et al. (2011) and Picard et
al. (2014) have reported association between muscle proteins and meat tenderness in
Bos Taurus. Another hypothesis may be due to the mechanism involving suppression
of protein degradation which, according to Koohmaraie et al. (2002), increases muscle
deposition and decreases meat tenderness.

The high proportion of MyHC-1Ix and MyHC-lla fiber types present in Nelore cat-
tle longissimus thoracis muscle, which increase muscle mass during postnatal growth,
may be a biological explanation also to the causal relationship between HCW and LMA
(MARTYN; BASS; OLDHAM, 2004; OLIVEIRA et al., 2011; CHRIKI et al., 2012; PI-
CARD et al., 2014). In addition, animals with high HWC have presented larger LMA in
different breeds (BRONDANI et al., 2004; REZENDE et al., 2012). For the relationship
between WBSF and LMA, no biological explanation was found in the literature. But
the edge between WBSF and LMA was stable, as it was present regardless the HPD
interval contents (Figure 2.2), and, therefore, supported by the data, i.e. the statisti-
cal consequences of their association were found by the IC algorithm applied on the
posterior distribution of residual (co)variances (VALENTE et al., 2011).

Inferences for the remaining edges indicate that BF has a positive causal effect
over HCW (Agcw,sr) and MB (A 5r), with posterior mean of 1.92 kg and 0.03 score
grade, respectively. The sign of the coefficients Aycw sr and Ay s sr wWere the same
as the sign of residual covariances inferred in MTM. The causal effect of BF on HWC
was expected once animals were placed in a feedlot system in which they are, usually,
fed with a high energetic diet (BOITO et al., 2018). During this period animals have
enough energy to convert into muscle mass and depot as BF (BRONDANI et al., 2004),
such that increasing the BF will also increase HCW (BOITO et al., 2018). In addition,
specific tissues changes with animal age by reducing muscle and bone growth rates
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and increasing fat deposition (BERG; BUTTERFIELD, 1976; NURNBERG; WEGNER,;
ENDER, 1998). Although weak, the causal effect of BF on MB can be explained based
on the process of muscle tissue development in cattle. Fat deposition in cattle follows
a chronological order during animal’s life, where intermuscular fat is the first fraction
of adipose tissue that is accumulated in the carcass followed by subcutaneous and
intramuscular fat or marbling (REZENDE et al., 2012).

Causal relationships change the focus from marginal associations among traits
and allow predicting changes when external interventions are applied (ROSA et al.,
2011). For the set of trait studied the most important interventions are that affecting
LMA, HCW, and MB, because of their economic importance. For example, if an in-
tervention is made on BF, such as controlling the diet energetic level, only the direct
genetic effects would influence MB and HCW, as the intervention would block the in-
direct genetic effect through BF (VALENTE et al., 2013). This intervention also would
indirectly influence LMA through the effect of HCW on LMA. External intervention on
WBSF may also influence selection for LMA and HCW. Animals slaughter age or feed-
ing management, for example, has been stressed out as important factors influencing
meat tenderness in cattle (CHRIKI et al., 2013). By controlling these factors, indirect
effects through WBSF could be blocked, and LMA and HCW would only be affected by
direct genetic effects (VALENTE et al., 2013). Thus, if an external intervention exists on
traits presenting causal effects among them, a breeding strategy based only on MTM
analysis could lead to wrong selection decisions (INOUE et al., 2016). Regardless
of the structure coefficients magnitude inferred here, SEM produced interesting and
useful results, generating causality hypotheses for further research and investigation
for carcass and meat quality traits (ROSA et al., 2011). But, the causal relationships
among carcass and meat quality traits identified in this study might be considered with
caution and confirmed using a larger number of records.

2.5 CONCLUSIONS

Potential causal relationships were detected among carcass and meat quality
traits in Nelore cattle. Using structure equation model, Warner-Bratzler shear force
had negative and positive causal effects on longissimus muscle area and hot carcass
weight, respectively; hot carcass weight had positive causal effect on longissimus mus-
cle area; and backfat thickness had positive effect on hot carcass weight and marbling
score. These findings suggest that interventions on Warner-Bratzler shear force and
backfat thickness would direct affect hot carcass weight, longissimus muscle area, and
marbling score.
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CHAPTER 3 - INTEGRATION OF MULTI-OMICS DATA TO INVESTIGATE CAUSAL
NETWORK FOR CARCASS AND MEAT QUALITY TRAITS IN NELORE CATTLE

3.1 ABSTRACT

Information regarding molecular networks can be used to better understand
phenotype expression. In this context, the integration of heterogeneous omic data has
the potential to uncover gene networks and the causal relationships among variables
under study. The objective of this study was to reconstruct gene-phenotype networks
and to perform a causal network analysis by integrating phenotypic, genotypic, and
transcriptomic data in Nelore cattle. Longissimus muscle area (LMA, cm?), backfat
thickness (BF, mm) and Warner-Bratzler shear force (WBSF, kg) traits were used. Phe-
notypes and genotypes information from 4,599 bulls were used and gene expressions
were accessed for 80 animals. In order to identify genomic regions associated with phe-
notypes, two genome scan analyses were performed: exploring association between
genotypic and phenotypic data (pQTL — phenotype quantitative trait loci mapping), and
between genotypic and gene expression data (eQTL — expression quantitative trait loci
mapping). For both genome scan analysis, a mixed linear model was used applying
the framework living-one-chromosome-out. A multi-trait analysis was carried out using
markers effects from each single genome scan analysis for the phenotypes studied
(LMA, BF, and WBSF). Co-localized genome regions identified by integrating multi-
omic data were used to reconstruct gene network and causal inference through struc-
tural learning algorithm. Fourteen genome regions showed significant associations with
LMA, BF, and WBSF in the multi-trait analysis and 19 cis-eQTL were overlapping five of
the genome regions. Based on the five cis-eQTL position (the most significant in each
genome region), thirty-two nearby genes were identified. Integrating phenotypes, geno-
types and gene expression data the inferred network indicated that the rs137704711,
located in chromosome 20, affected the three phenotypes (LMA, BF, and WBSF), and
the rs133894950, located in chromosome 16, affected BF through the expression of
several genes located in different chromosomes.

Key-words: beef cattle, causal inference, gene expression, graphical models, quanti-
tative trait loci

3.2 INTRODUCTION

Carcass and meat quality traits such as LMA, BF and WBSF have an important
impact on consumer satisfaction and meat product pricing. Despite their importance,
selection programs have not fully explored these traits due to costly and difficult to mea-
sure, they are observed later in the animal’s life and are mediated by many genes and
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environmental factors (HOCQUETTE et al., 2012; FONSECA et al., 2017). Genome-
wide association studies (GWAS) have identified several genomic regions, also termed
as pQTL, for carcass and meat quality traits (KIM et al., 2011; LU et al., 2013; MAG-
ALHAES et al., 2016; FERNANDES JUNIOR et al., 2016). However, pQTL identified
in a typical GWAS explaining only a small fraction of the genetic variability, they are
not necessarily true causal variants and the majority pQTL fall in non-coding genomic
regions (MACKAY; STONE; AYROLES, 2009; MONTGOMERY; DERMITZAKIS, 2011;
AINSWORTH; SHIN; CORDELL, 2017).

Advances in sequencing technologies have enabled high-throughput measure-
ment of transcriptome at the population level, which combined with genotype markers
have made possible to map thousands eQTL (BOUWMAN et al., 2018; CESAR et
al., 2018; HIGGINS et al., 2018). Indeed, the eQTL mapping is a widely and powerful
tool to identify regulatory mechanisms involved in the phenotypic expression (MONT-
GOMERY; DERMITZAKIS, 2011). Combining eQTL and pQTL information may has
the potential to uncover gene networks, the genetic control of gene activity and un-
ravel the genetic architecture of complex traits, as well as may help to shed light
on the non-coding variants that might play important role in phenotype expressions
(KADARMIDEEN; VON ROHR; JANSS, 2006; HUANG; ZHENG; PRZYTYCKA, 2010;
STEIBEL et al., 2011; NICA; DERMITZAKIS, 2013; YANG; RONG; KUI, 2017).

The integration of different layers of information might be used to elucidate
causative changes that lead to phenotypes variation (HASIN; SELDIN, 2017). However,
genetical genomic studies have not focused on the causal relationship between the
variables under study (CHAIBUB NETO et al., 2010; PENAGARICANO et al., 2015).
Investigating causal relationships among phenotype, genotype, and gene expression
are justified by the Mendelian randomization of alleles and the unidirectional effect of
genotype on gene expression and phenotype (ROSA et al., 2011; CHEN, 2012; PENA-
GARICANO et al., 2015). Even with the availability of a large number of variables and
omic layers, learn causality remains a challenge and few studies have been conducted
in animal livestock. The objective of this study was to reconstruct gene-phenotype net-
works and perform a causal network analysis by integrating phenotypic, genotypic, and
transcriptomic data in Nelore cattle.

3.3 MATERIAL AND METHODS

To reconstruct gene-phenotype networks and perform causal inference the mul-
tistep procedure proposed by Pefiagaricano et al. (2015) was used. Briefly, genomic
regions associated with LMA, BF, WBSF and expression traits were identified through
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genome scan analyses (pQTL and eQTL mapping), and then, significant regions from
both QTL mapping were co-localized to perform network reconstruction using causal
structural learning algorithms. For the data set used here, all animal procedures were
approved by the Sao Paulo State University (Unesp), School of Agricultural and Veteri-
nary Science Ethical Committee (Approval No. 18.340/16).

3.3.1 Phenotypic data collation

Data were collected from 4,599 Nelore bulls born between 2008 and 2014. The
animals were raised under pasture conditions and finished in feedlot system (for around
three months), at different farmers located in the southeast, mid-west, and northeast of
Brazil. These animals were slaughtered at an average age of 24 months in commercial
slaughterhouse. After 24 to 48 hours chilling, from the slaughter, a sample from longis-
simus thoracis muscle (between 12 and 13™ ribs) were collected for each animal. Using
a plastic grid (squared with 1 cm?) placed on a steak of 2.54 cm thickness, LMA trait
was measured. BF trait, defined as the layer of subcutaneous fat on the steak, was
measured using a caliper. Steaks were cooked to an internal temperature of 71 °C and
cooled at 2 °C for 24 hours as proposed by Wheeler, Koohmaraie e Shackelford (1995).
The mean of eight cooked meat cylinders (1.27 mm), sheared with a V blade attached
to a Warner-Bratzler shear force machine (G-R Electric, Manhattan, KS), was used as
WBSF trait. For the analyses, contemporary groups (CG) were defined as year and
farm of birth, farm and management group at yearling and slaughter date. Phenotypes
with three standard deviations above or below to the mean of their CG and CG with
less than three animals were removed from the data set. Further details for the data
set used in the analyses are shown in Table 3.1.

Table 3.1 — Descriptive statistical for longissimus muscle area (LMA), backfat thickness
(BF) and Warner-Bratzler shear force (WBSF) traits in Nelore cattle.
Traits Mean SD Min Max
LMA (cm?) 68.01 7.87 40.0 96.0
BF (mm) 475 217 1.0 14.0
WBSF (Kg) 6.44 190 1.8 11.9
Standard deviation (SD), minimum (Min) and max-

imum (Max) for 4,599 animals sourced in 156 con-
temporary groups.

3.3.2 Genotypic data

DNA was isolated for genotyping using muscle tissues longissimus thoracis from
4,599 animals described previously. The DNeasy Blood & Tissue Kit (Qiagen GmbH,
Hilden, Germany) was used to extract DNA as manufacturer’s instructions. Once DNA
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was isolated, samples were analyzed for quality and quantity using a Nanodrop spec-
trophotometer. Genotyping was performed using BovineHD BeadChip (lllumina®, Inc.,
San Diego, CA, USA) and GeneSeek® Genomic Profiler Indicus HD - GGP75Ki (Neo-
gen Corporation, Lincoln, NE, USA) which contains 777,962 and 74,677 SNP markers
distributed across the genome, respectively. The Fimpute software (SARGOLZAEI;
CHESNAIS; SCHENKEL, 2014) was used to carry out genotype imputation from GGP-
75Ki to BovineHD, including pedigree information, with an accuracy of imputation equal
to 0.992 (CARVALHEIRO et al., 2014).

3.3.3 Gene expression data

Longissimus thoracis muscle tissue samples were collected from 80 bulls (pre-
viously described) during slaughter. RNA sequencing (RNA-seq) was carried out by
lllumina HiSeq 2500 System to produce 2x100 base pairs paired-end reads. Details
regarding tissue sample collection, and RNA extraction and sequencing were reported
by Fonseca et al. (2017). In order to improve mapping specificity, reads were trimmed
to remove contaminated adaptor sequences using Trimmomatic 0.36 (Bolger et al.,
2014). Based on the Ensembl Bos_taurus UMD3.1 (version 92), reads were mapped
and counted using STAR software (DOBIN et al., 2013). Gene count data were nor-
malized using Trimmed Mean of M-values (TMM) method and log, transformed using
edgeR (ROBINSON; MCCARTHY; SMYTH, 2010) R package (R Core Team, 2017).
Principal component analysis (PCA) was performed on genes expression data to iden-
tify confounding factors within gene expression data (ELLIS et al., 2013) using prcomp
function in R software (R Core Team, 2017).

3.3.4 Quality control

Genotype quality control for pQTL mapping was carried out by removing geno-
types unmapped to autosomes SNP markers or sex-linked, with call rate lower than
0.98, minor allele frequency lower than 0.05 and those that deviated from the Hardy-
Weinberg equilibrium (p-value < 107°). Samples were removed from analysis if they
had call rate lower than 0.90. After quality control, a total of 4,599 samples and 410,019
SNP markers remained for further analyses. Similar quality control previously described
was applied for genotypes and samples used in the eQTL mapping, except for minor al-
lele frequency, in which SNP markers with minor allele frequency lower than 0.04 were
removed. Additionally, genotypes with less than 2 animals in all genotypes were also
removed. For transcriptomic data, expressed genes with non-zero counts in more than
20% of all animals were retained in the data set. Seventy-eight samples, 302,829 SNP
markers, and 12,863 genes expression were suitable for further analysis. All quality
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control were performed using snpStats (CLAYTON, 2015) R package (R Core Team,
2017).

3.3.5 Phenotype and expression QTL mapping

Genome scan analyses between each phenotype (LMA, BF, and WBSF) and
SNP makers (pQTL mapping) were performed by using a mixed linear model imple-
mented in GCTA software (YANG et al., 2011). The model fitted was:

y=Xg+Wu+g+e (3.1)

where y is an n x 1 vector of phenotypes with n being the number of animals, 3 is a
vector of fixed effects (CG and slaughter age), u is a vector of SNP marker effects, g
is an n x 1 vector of the polygenic effect (captured by the genomic relationship matrix
calculated using all SNP), e is a vector of residual effects, X is an incidence matrix
relating 8 in y and W is a standardized genotype matrix with the if" element w;; =
(xij - 20;) / \/2pi(1 — p;) where x;; is the number of copies of the reference allele for
the #* SNP of the j* individual and p; is the frequency of the reference allele. The
assumptions for markers (u), genetic (g) and residual (e) effects were: u ~ N(0, | o),
g~ N, Go?),and e ~ N(0, | 52), where [ is an n x n identity matrix, o is the SNP
variance, o is the variance explained by all the SNPs, o7 is the residual variance, and G
is the genomic relationship matrix. For the ease of computation, o7 is estimated based
on the null model (i.e. y = X5 + g + €), and then fixed while testing for the association
between each SNP marker and the trait. Genetic relationship between individual j and
k was estimated by the following equation:

1 al (x; 2p T 2p;)
i 4 ik — % .
i 3 = 1, 2, aeny N”]alkels 32

The significance of the additive marker effect on each trait was tested using the proba-
bility value (p-value) test by comparing the full model to the null model without marker
effects.

From the SNP markers effect estimated by each single-trait GWAS, we applied
a multi-trait statistic test to determine the effect of #* SNP (i = 1, 2, ..., 410,019)
across LMA, BF and WBSF traits as proposed by Bolormaa et al. (2014). Following
a chi-square distribution (x?) with t degrees of freedom (t is the number of traits) this
approach test for each SNP marker, based on a null hypothesis that a SNP maker has
no effect on any trait. Multi-trait significant level for each SNP marker was calculated
as follow:
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XMulti—trait = 6V ti, (3.3)

where t; is a 3 x 1 vector of signed t-values of * SNP for all the traits, ¢, is a transposed
of vector t; and V! is an inverse of 3 x 3 correlation matrix where the correlation
between two traits is the correlation over the 410,019 t-values of the two traits. The
t-values were calculated as t; = u; / SE(u;), where SE is the standard error for the "
SNP markers. False discovery rate (FDR) of 1 % was used to control for multiple testing
(BENJAMINI; HOCHBERG, 1995).

For eQTL mapping, the same mixed linear model described for pQTL mapping
were applied. However, gene expression data expressed in log, scale were used as
target variable (y), the fixed effect of sequencing date, and the first six principal com-
ponents (to account for confounding factors in the gene expression data) and age at
slaughter (linear effect) as covariates in the model (X3). The CG was not included as
fixed effect because the animals were raised under the same environmental condition
(i. e. sex, management, farm, and year). Local eQTL (cis-eQTL) were identified when
the significant SNPs was located within 1 Mb of the associated gene. The cis-eQTL p-
values were corrected for multiple testing across all expression traits using FDR of 5%
(Benjamini and Hochberg, 1995). The eQTL mapping was carried out by our group in
a study in preparation (BRAZ et al.). The Gene Ontology (GO) and biological pathways
annotations of the genes were retrieved using the biomaRt package (DURINCK et al.,
2009) in R (R Core Team, 2017). The positions of the significant genome regions were
compared with positions of know QTL on the Bos taurus UMD3.1 reference genome
according to the Animal QTL database (HU et al., 2013).

3.3.6 Co-localized genome regions

Given a particular significant pQTL identified in the multi-trait analysis, delim-
ited by a 250 kb interval to each side of the peak, all significant cis-eQTL overlap-
ping this region were picked. However, for the causal inference we selected only the
most significant cis-QTL as well as the gene expressions where these cis-eQTL are lo-
cated. Based on the cis-eQTL position, a window (500 kb downstream and upstream)
was opened and gene expressions for all nearby genes were used. The co-localized
genome regions were carried out in R (R Core Team, 2017).

3.3.7 Causal inference

Co-localized genome regions identified by integrating multi-omic data were used
to perform causal inference through Bayesian network (BN). A BN is a special case of
graphical model, in which all the edges are directed (directed acyclic graph — DAG),
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that encodes a joint probability distribution over a set of random variables (PEARL,
1988). BN are composed of two parts: a set X = (xq, Xq, ..., X,) of random variables
describing the quantities of interest, and a graph DAG = (V, E), in which each vertex v
€ V, also called node, is associated with one of the random variables in X. Each edges
e € E, also called arcs or links, are used to express the dependence structure of the
data (SCUTARI; STRIMMER, 2011). The X variables under investigation here include
ttraits (Xe1, Xs2, - - -, Xen), q CiS-€QTLS (X,1, Xg2, - - -, Xg4n), @aNd g genes expressions traits
(Xg15 Xg25 -- -5 Xgn). Phenotypes (LMA, BF, and WBSF) and gene expressions used in
the causal learning structure were pre-adjusted for the systematic effects described for
pQTL and eQTL mapping (see Phenotype and expression QTL mapping section). BN
was performed in two steps: first, the DAG structure was identified (structure learn-
ing) and second, the parameters were estimated (parameter estimation) based on
the structure obtained in the first step. For structure learning we used the constraint-
based structure learning algorithm (TSAMARDINQOS; ALIFERIS; STATNIKOV, 2003).
The conditional independence tests were based on Fisher’s Z test, which is a transfor-
mation of the linear correlation coefficients between X and Y given Z (pXY | Z) and
defined as:

Z(X,Y]Z):log<1+pxy|z> VNZ1Z] 73 (3.4)

1 — pxy|z 2

where nis the number of observations and | Z | is the number of nodes belonging to Z
This test has an approximate normal distribution Z(X, Y| Z) ~ N (0, 1). In the structure
learning a priori biological knowledge was used, excluding the possibilities that t —
g, t — g, and g — q; that is, phenotypes cannot affect cis-eQTLs and gene expres-
sion as genomic variables are measured at baseline and the phenotypes is measured
at follow-up times, and gene expression cannot affect cis-eQTL since according to
the central dogma of molecular biology messenger RNA is produced by transcription
from segments of DNA (NI; STINGO; BALADANDAYUTHAPANI, 2014). After structure
learning the causal parameters estimation, under the context of normal distributed vari-
ables, were performed using maximum likelihood. The structure stability of the causal
networks was evaluated using Jackknife resampling by leaving out one observation
per time from the dataset. For each sampling we evaluate the presence (presence or
absence within samples) and direction (same direction as the original arrow, opposite
direction, or undirected arc within samples) of the arc based on original graph. All the
analyses were performed using bnlearn package (SCUTARI, 2010) implemented in R
(R Core Team, 2017).
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3.4 RESULTS AND DISCUSSION

Following the procedure proposed by Pefiagaricano et al. (2015), the first step
was to identify genome regions (pQTL) associated with phenotypes (LMA, BF, and
WBSF). From classical genome scan analysis we performed a multi-trait analyses, in
which 96 SNP markers were found significant (FDR < 1 %) across the three traits
(Figure 3.1). The multi-trait analysis is a powerful procedure to identify pQTL positions
that affect all the associated traits (BOLORMAA et al., 2014). Significant SNP markers
are located in fourteen genome regions (pQTL) distributed over 10 chromosomes: 1,
3, 5, 8,12, 13, 14, 16, 20 and 22. A total of 39 genes were identified within regions
tagged by the pQTL including RAP2B, NDUFA10, PCED1B, AMIGOZ2, bta-mir-1251,
MYBPC1, CHPT1, SYCP3, GNPTAB, DRAM1, WASHC3, TMC1, ALDH1A1, ANXAT1,
MAFB, RF00026, LYN, RPS20, PLAG1, CHCHD7, SDR16C5, SDR16C6, PENK, MOS,
RF01277, RF00003, TGS1, TMEM74, PARK7, TNFRSF9, VAMP3, CAMTA1, ERRFI1,
CCNB1, SLC30A5, CENPH, TGFBR2, GADL1, and RF00026. Overall, these candi-
date genes are related to zinc ion transport (GO:0006829), lipid metabolic process
(GO:0006629), negative regulation of cell population proliferation (GO:0008285), reg-
ulation of gene expression (GO:0010628), regulation of keratinocyte differentiation
(GO:0045616), muscle contraction (GO:0006936), insulin secretion (GO:0030073), my-
oblast migration involved in skeletal muscle regeneration (GO:0014839), positive reg-
ulation of MAPK cascade (GO:0043410), regulation of growth (GO:0040008), and cell
differentiation (GO:0030154). Some of these identified genome regions have already
been associated with LMA, BF and WBSF in Nelore cattle (FERNANDES JUNIOR et
al., 2016; MAGALHAES et al., 2016; SILVA et al., 2017). These findings provide evi-
dence about the existence of genome regions with additive pleiotropic effects on LMA,
BF and WBSF traits.

The second step of the procedure proposed by Pefagaricano et al. (2015) was
to identify eQTL through the integration of genotype and gene expression data, and
was performed by our group in a study in preparation (BRAZ et al.). Overall, the map-
ping of SNP markers associated with variation in Nelore muscle tissue RNAs identified
10,026 significant (FDR < 5 %) putative cis-eQTL, affecting the expression of 1,343
genes on all autosomal chromosomes. Many SNPs in non-coding regions were iden-
tified and their identification might be crucial to the understanding of the molecular
mechanisms underlying economically important traits in Nelore cattle.

Nineteen putative cis-eQTL (FRD < 5%) were detected overlapping five parti-
cular pQTL (Table 3.2), and they were associated with the level of expression of the
following genes: NDUFA10, WASHC3, VAMP3, TAF9, and GADL1, located in chromo-
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Chromosome

Figure 3.1 — Manhattan plot based on the —log,, p-values of marker throughout the
whole genome using multi-trait analysis. Red line indicates significance at
FDR 1%

somes 3, 5, 16, 20, and 22, respectively. Genome scan analysis showed that there
are at least two phenotypes and five different gene expression traits significantly as-
sociated with the same genome regions on chromosomes 3, 5, 16, 20, and 22 for
the populations studied. In addition, twenty-seven nearby genes (within a window of
500 kb downstream and upstream) were considered co-localized with the cis-eQTL
including CSF2RA, COPS9, OTOS, MYBPC1, CHPT1, SYCP3, GNPTAB, DRAM1,
NUP37, PARPBP, IGF1, ERRFI1, PARK7, CAMTA1, NAIP, GTF2H2, OCLN, MAR-
VELD2, RAD17, AK6, CCDC125, CDK7, MRPS36, CENPH, CCNB1, SLC30A5, and
TGFBR2.

Table 3.2 — Co-localized significant genome regions by chromosome (BTA).
BTA pQTL (start-end position) cis-eQTL
3 119591217 - 120091217 rs136982136
5 65733035 - 66233035  rs135207526; rs133451333; rs136853608
rs133894950; rs133860779; rs133046724;
16 46203881 - 46703881 rs132642057; rs137177225
20 10422865 - 10922865  rs137704711
rs41992695; rs109064338; rs134054023;
22 4924587 - 5424587 rs136516831; rs41991944; rs41991942;
rs41991225; rs41991219; rs110378126

In bold is the most significant cis-eQTL.

For causal structure learning three pre-adjusted phenotypes, five cis-eQTL (the
most significant cis-eQTL) and 32 genes expression traits (pre-adjusted for the system-
atic effects) were included in the analyses. The causal network inferred by the IAMB
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algorithm is depicted in Figure 3.2. The algorithm allowed to reconstructing a partially
directed acyclic graph, without using any prior information, with only one undirected
edge (Figure 3.2a). The link between TAF9 and NAIP genes remained unresolved
(i.e. undirected). TAF9 is a transcription factor and may have causal effect on NAIP.
From this information (prior knowledge) is possible to set direct link between them
(TAF9 — NAIP), which allow the algorithm to reconstruct a fully directed acyclic graph
(Figure 3.2b). Based on the causal graphical model, genetic markers are marginally
associated with the remaining variables under study (i.e., phenotypic and expression
traits). The causal network (Figure 3.2b) indicated that the effects of the genotypes on
the phenotypes are mediated by the expression of several genes located in different
genome regions and chromosomes. In fact, these results were expected once the traits
studied here are considered complex been modulated by many genes.

e @@@m
EE> G RS CEeS Caems G| @i
o s e (o) twe vl e

(or ) R CERAG

AR PRPERE @@@@

D> R SR> (EES CleD (o] G
Caresa > s > Cwe > () Chore > Ceraem > GhREsED)

(&) R G

Figure 3.2 — Causal networks integrating phenotypic (blue), cis-eQTL (red) and tran-
scriptomic (green) data. Causal network inferred without using any prior
information (a) and causal network inferred with the prior knowledge
TAF9(20) — NAIP(20) (b). Between parentheses are the chromosomes
for each cis-QTL and expression level.
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The SNP rs137704711, located on chromosome 20 at 10,627,752 bp, stood out
as influencing LMA, BF and WBSF. Many QTL for growth and meat quality traits includ-
ing body weight (QTLs 11100, 11101, and 11102), hump length and width (QTLs 3423,
and 3427, respectively), and fatty acid content (QTL 12250), were identified in beef cat-
tle in the same region. In addition, Fernandes Junior et al. (2016) reported a QTL for
LMA in this region using animals from the same population as used in this study. The
rs137704711 influence WBSF through the expressions of the genes SLC30A5 and
ERRFI1 (Figure 3.2b). SLC30A5 encodes a protein involved in zinc transport into beta
cells in order to produce insulin (KARISA et al., 2013), which contributes to ontogenesis
of skeletal muscles (GOTOH et al., 2014). Karisa et al. (2013) reported that SLC30A5
was associated with carcass traits in beef cattle. According to Liu et al. (2015), ERRFI1
plays role in the development of muscular system. ERRFI1 is involved in keratinocyte
proliferation and differentiation, which may play an important role in myoblast differenti-
ation (LEAL-GUTIERREZ et al., 2018). Genes related to keratin filament were reported
to be associated with WBSF in Nelore steers (TIZIOTO et al., 2013).

The genes in the pathway between the rs137704711 and LMA (TAF9, MYBPC1,
CDK7, and AK®6) are involved in muscle development processes. TAF9 encodes the
TATA-box binding protein (TBP) associated factor 9 which is a transcription factor that
may regulate the expression of several genes influencing LMA. Malecova et al. (2016)
showed that TBP is required for skeletal muscle differentiation since they regulate the
transcription of the MyoD gene family during this process in mice. MyoD gene family
regulates the number of muscle fibers at birth and plays key roles in growth and mus-
cle development (te PAS et al., 1999; HANDEL; STICKLAND, 1988). Du et al. (2013)
reported that a member of the MyoD gene family was associated with LMA in beef cat-
tle. MYBPC1, a myosin binding protein C, interacts with muscle-type creatine kinase,
allowing it to regulate energy homeostasis during muscle contraction by coupling to
the myofibril (CHEN et al., 2011). Tong et al. (2015) assumed that MYBPC1 might
lead to high growth performance through enhancing muscle satellite cell proliferation.
MYBPCT1 protein was differentially expressed between high and low-quality meat in
longissimus thoracis muscle of beef cattle (WEI et al., 2019). Moreover, Tong et al.
(2015) reported that expression levels of the MYBPC1 gene was significantly higher in
the high LMA group than in low LMA group, and identified a SNP in the MYBPC1 that
was associated with LMA in Japanese Black beef cattle. CDK7 is involved in cell cy-
cle regulation process (GO:0051726), which may influence growth, differentiation, and
tissue formation during development (HEUVEL, 2005). Fernandes Junior et al. (2016)
reported that genes involved in cell cycle regulation were associated with LMA using
animals from the same population as used in the present study. AKE6 is located in the
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same region of TAF9 gene and they share two exons. Therefore, AK6 and TAF9 may
interact with each other and/or may carry out the same biological functions.

Two pathways were identified influencing BF, one coming from rs137704711
(TAF9, MYBPC1, CAMTA1, VAMP3, and OTOS) as previously mentioned, and other
from rs133894950 (VAMP3, and OTOS). The SNP rs133894950 is located on chromo-
some 16 at 45,612,936 bp where a QTL for backfat thickness (QTL 11712) has been
reported in beef cattle. TAF9 is a transcription factor and may regulate the expression
of genes that influence BF. MYBPC1 encodes a protein that plays an important role
in efficient energy metabolism and homeostasis during muscle contraction (CHEN et
al., 2011). MYBPC1 has been associated with intramuscular fat of longissimus dorsi
in beef cattle (TONG et al., 2015). The protein encoded by CAMTAT participates in
the calcium/calmodulin signaling process (BAS-ORTH et al., 2016), which may reg-
ulate adipocyte development (YANG et al., 2015). Silva et al. (2017) reported that a
calmodulin family gene was associated with BF in Nelore cattle. VAMP3 was shown to
be expressed in rat adipocyte (CAIN; TRIMBLE; LIENHARD, 1992). No evidence of a
biological link or mechanism connecting OTOS gene to BF was found in the literature.

Parameter estimation (causal parameters) and the stability of the network were
performed conditioned on the DAG structure depicted in Figure 3.2b, and presented
here only for the variables with a paths from rs137704711 and rs 133894950 to the phe-
notypes (LMA, BF, and WBSF), showed in Figure 3.3a. The rs137704711, located in
chromosome 20, had a positive total effect on LMA and WBSF, whereas rs137704711
and rs133894950 had a negative total effect on BF. These effects were mediated by
the expression of several genes located in different chromosomes. The majority of the
links and directions showed high stability, except for the relationship VAMP3 — OTOS
and MYBPC1 — CDK7 — AK6 (Figure 3.3b). Removing a single data point may have
caused instability in the network for some relationships among the variables studied
(PENAGARICANO et al., 2015). However, the arrows between the genes affecting di-
rectly the phenotypes remained, in general, unchanged. The procedure applied here to
reconstruct the gene-phenotype causal network may help shed light on the molecular
mechanism underlying LMA, BF, and WFSF traits.
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rs133894950(16) rs137704711(20)

0.16 (0.02) -0.10 (0.02)

rs133894950(16) rs137704711(20)

100 (100) 64 (64)

100 (100)

9.10(0.71)

-0.12(0.10)

Figure 3.3 — Causal parameters and the stability of the network integrating phenotypic
(blue), cis-eQTL (red) and transcriptomic (green) data. Point estimates
(standard errors), conditional on the inferred DAG structure (Figure 3.2b),
estimated by Maximum Likelihood (a), and the network stability evaluated
using Jackknife resampling expressed in percentage (b) that a given arc
was presented (with the same direction).

3.5 CONCLUSIONS

Integrating phenotypes, genotypes and transcriptomic data allowed identifying
five co-localized genome regions that may modulate the expression of important genes
that influence longissimus muscle area, backfat thickness and meat tenderness traits.
The rs137704711 affected longissimus muscle area, backfat thickness and meat ten-
derness traits and the rs133894950 affected backfat thickness through the expression
of many genes located in different chromosomes. Longissimus muscle area and meat
tenderness were affected positively by rs137704711, whereas backfat thickness was
affected negatively by rs137704711 and rs133894950.
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